Multi-Dimensional Nonsystematic Reed-Solomon Codes

نویسنده

  • Akira Shiozaki
چکیده

Abstract This paper proposes a new class of multi-dimensional nonsystematic Reed-Solomon codes that are constructed based on the multi-dimensional Fourier transform over a finite field. The proposed codes are the extension of the nonsystematic Reed-Solomon codes to multi-dimension. This paper also discusses the performance of the multidimensional nonsystematic Reed-Solomon codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

New multilevel codes over GF(q)

In this paper, we apply set partitioning to multi-dimensional signal spaces over GF(q), particularly GFq-l(q) and GFq(q), and show how to construct both multi-level block codes and multi-level trellis codes over GF(q). We present two classes of multi-level (n, k, d) block codes over GF(q) with block length n, number of information symbols k, and minimum ,1-1 • { d } distance d_n >_ d, where n =...

متن کامل

Decoding interleaved Reed-Solomon codes over noisy channels

We consider error-correction over the Non-Binary Symmetric Channel (NBSC) which is a natural probabilistic extension of the Binary Symmetric Channel (BSC). We propose a new decoding algorithm for interleaved Reed-Solomon Codes that attempts to correct all “interleaved” codewords simultaneously. In particular, interleaved encoding gives rise to multi-dimensional curves and more specifically to a...

متن کامل

Decoding of Interleaved Reed Solomon Codes over Noisy Data

We consider error-correction over the Non-Binary Symmetric Channel (NBSC) which is a natural probabilistic extension of the Binary Symmetric Channel (BSC). We propose a new decoding algorithm for interleaved Reed-Solomon Codes that attempts to correct all “interleaved” codewords simultaneously. In particular, interleaved encoding gives rise to multi-dimensional curves and more specifically to a...

متن کامل

Efficient encoding via Gröbner bases and discrete Fourier transforms for several kinds of algebraic codes

Abstract—Novel encoding scheme for algebraic codes, such as codes on algebraic curves, multidimensional cyclic codes, and hyperbolic cascaded Reed–Solomon codes, is proposed with numerical examples. We make use of the 2-dimensional inverse discrete Fourier transform, which generalizes the Mattson–Solomon polynomial for Reed–Solomon codes. We also generalize the workings of the generator polynom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1207.7222  شماره 

صفحات  -

تاریخ انتشار 2012